

Name	Class	Date	of b
Your teacher may watch to see if	you can:		
• follow instructions carefully to	make spinners		
• make accurate timings using	a stop watch.		

Aim

To find out how the lengths of the wings on a spinner affect the time it takes to fall.

Introduction

Sycamore maple trees have fruits shaped like wings. Two fruits are stuck together to form a double wing. The fruits spin as they fall from the trees, and this means that they take a longer time to fall. If they are in the air for a longer time, there is more chance that the wind will blow the fruits away from the parent tree. We can make a model of how these fruits spin using paper.

Hypothesis

The time taken for a model spinner to fall depends on the length of its 'wings'.

Prediction

1 Use the hypothesis to make a prediction. One way of doing this is to use 'If ... then ...'

Method

 Apparatus piece of paper 2 paper clips or staples 	rulerstopwatch	 scissors 	⚠ Do not climb on furniture to drop your spinner.
A Cut out the template below.			,

I fold in	fold forward	 	 		 	
l fold in l l	fold back					1111111

B Fold your spinner as shown.

- **D** Measure out a set height from which to drop your spinner.
- **E** Drop your spinner and use a stopwatch to time how long it takes to reach the ground. Do this twice more.
- F Now cut 2 cm off the ends of each wing and repeat step E.
- **G** Repeat step **F** until there are no wings left.

Recording your results

2 Fill in this table to show your results.

Length of wings	1st drop time (s)	2nd drop time (s)	3rd drop time (s)	Mean drop time (s)
10 cm				
8 cm				
6 cm				
4 cm				
2 cm				
0 cm				

Considering your results/conclusions

- 3 Do your results match your prediction? If not, how do they differ?
- 4 Why do you think you got the results you did? Use scientific reasons to explain them.
- 5 What would be the problem if sycamore maple fruits had shorter 'wings'?

I can...

- calculate means
- explain why sycamore maple fruits have wings.

C Fix it together with staples or paper clips.

