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Highlights

• 36,633 measured acetylene transitions from 60 publication analyzed

• 6001 ortho and 5200 para empirical energy levels determined

• Comparisons made with other acetylene databases

1



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Marvel analysis of the measured high-resolution rovibronic
spectra of C2H2

Katy L. Chubba1 , Megan Josephb, Jack Franklinb, Naail Choudhuryb , Tibor
Furtenbacherc, Attila G. Császárc , Glenda Gaspardb, Patari Oguokob, Adam Kellyb ,

Sergei N. Yurchenko,a Jonathan Tennyson,a1 , Clara Sousa-Silva.d,a,b

aDepartment of Physics and Astronomy, University College London, London, WC1E 6BT, UK

bHighams Park School, Handsworth Avenue, Highams Park, London, E4 9PJ, UK

cInstitute of Chemistry, Loránd Eötvös University and MTA-ELTE Complex Chemical Systems Research
Group, H-1518 Budapest 112, Hungary

dDepartment of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77
Massachusetts Ave, Cambridge, MA 02139, USA

Abstract

Rotation-vibration energy levels are determined for the electronic ground state of the

acetylene molecule, 12C2H2, using the Measured Active Rotational-Vibrational Energy

Levels (Marvel) technique. 37,813 measured transitions from 61 publications are consid-

ered. The distinct networks linking ortho and para states are considered separately. The

20,717 ortho and 17,096 para transitions measured experimentally are used to determine

6013 ortho and 5200 para energy levels. The Marvel results are compared with alternative

compilations based on the use of effective Hamiltonians.
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1. Introduction

Acetylene, HCCH, is a linear tetratomic unsaturated hydrocarbon whose spectrum is

important in a large range of environments. These range from the hot, oxy-acetyene flames

which are widely used for welding and related activities [1], temperate, where monitoring

of acetylene in breath gives insights into the nature of exhaled smoke [2], to the cold, where

the role of acetylene in the formation of carbon dust in the interstellar medium is a subject

of debate [3]. Similarly acetylene is observed in star-forming regions [4] and thought to be

an important constituent of clouds in the upper atmospheres of brown dwarfs and exoplan-

ets [5]. Acetylene provides a major source of opacity in the atmospheres of cool carbon

stars [6, 7]. It is present in various planetary and lunar atmospheres in the solar system,

including Jupiter and Titan [8] and has been detected on comets [9]. The first analysis

of the atmosphere of a super-Earth, exoplanet 55 Cancri e [10], speculate that acetylene

could be present in its atmosphere; however the spectral data currently available does not

allow for an accurate verification of its presence in such a high temperature environment.

The spectroscopy of acetylene has long been studied in the laboratory, particularly by

the group of Herman in Brussels. A full analysis of these experimental studies is given

below. Herman and co-workers have presented a number of reviews of the behavior of

acetylene in X 1Σ+
g ground electronic state [11, 12, 13]. Besides summarizing the sta-

tus rotation-vibration spectroscopy of the system, these reviews also give insight into the

internal dynamics of the system, a topic not considered here.

From a theoretical point of view a number of variational nuclear motion calculations

have been performed for the acetylene ground electronic state [14, 15, 16, 17, 18, 19].

New theoretical ro-vibrational calculations for this molecule are in progress as part of the

ExoMol project [20, 21], a database of theoretical line lists for molecules of astrophys-

ical importance, appropriate up to high temperatures of around 300 – 3000K, for use in

3



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

characterising the atmospheres of cool stars and exoplanets. High accuracy experimental

energy levels provide essential input for testing and improving theoretically calculated line

positions.

In this work we present the largest compilation of published experimental data on ro-

vibrational transitions for the acetylene molecule, which has been formatted and analysed

using the Marvel (Measured Active Rotational-Vibrational Energy Levels) spectroscopic

network software, the results of which are presented and discussed in this paper. The next

section gives the underlying theory used for the study. Section 3 presents and discusses

the experimental sources used. Results are given in Section 4. Section 5 discusses these

results; this section presents comparisons with recent empirical databases due to Amyay

et al. [22] (henceforth 16AmFaHe), Lyulin and Campargue [23] (henceforth 17LyCa) and

Lyulin and Perevalov, [24] (henceforth 17LyPe), which builds on their earlier work [25],

all of which only became available while the present study was being undertaken. Finally

section 6 gives our conclusions.

2. Theory

2.1. MARVEL

The Marvel procedure [26, 27] is based on the theory of spectroscopic networks

[28, 29] and is principally based on earlier work by Flaud et al. [30] and Watson [31,

32]. The Marvel program can be used to critically evaluate and validate experimentally-

determined transition wavenumbers and uncertainties collected from the literature. It in-

verts the wavenumber information to obtain accurate energy levels with an associated un-

certainty. Marvel has been successfully used to evaluate the energy levels for molecules,

most recently TiO [33] and others such as 14NH3 [34, 35], water vapour [36, 37, 38, 39, 40],

H2D+ and D2H+ [41], H+
3 [42], and C2 [43]. To be useful for Marvel, measured transitions

must have an associated uncertainty and be assigned. This means that each energy level
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resulting from the study must possess a unique set of quantum numbers. It should be noted

that while Marvel requires uniqueness it does not require these quantum numbers to be

strictly correct, or indeed even meaningful, beyond obeying rigorous selection rules; these

assignments simply act as labels for each state. Nevertheless, it greatly aids comparisons

with other data if sensible values are used. The quantum numbers used in the present study

are considered in the following section.

2.2. Quantum number labelling

The 11 quantum numbers that were used for labelling the upper and lower states are

detailed in Table 1. This includes the quanta of each vibrational mode in normal mode

notation: v1, v2, v3, v4, l4, v5, l5,K = |`4 + `5| and J, where v1, . . . , v5 are the vibrational

quantum numbers, `4 and `5 are the vibrational angular momentum quantum numbers

associated with v4 and v5, respectively, with |l| = v, v− 2 . . . 1 for odd v, |l| = v, v− 2 . . .0 for

even v. K = |k| is the rotational quantum number, with k corresponding to the projection of

the rotational angular momentum, J, on the z axis. K is also equal to the total vibrational

angular momentum quantum number, |L| = |`4 + `5|, and therefore K will be also referred

to as the total vibrational angular momentum. J is the quantum number associated with

rotational angular momentum, J. We follow the phase convention of the Belgium group,

[13] for K ≡ |k| = |`4 + `5| with `4 ≥ 0 if k = 0. We also use the e or f labelling, along

with the nuclear spin state (ortho or para).

The quantum number assignments for this work were taken from the original sources

where possible, with any exceptions noted in section 3.1 and 3.2: particular reference

should be made to the general comments (1a) and (1b) in 3.2. While Marvel requires a

unique set of quantum numbers for each state, it merely treats these as labels and whether

they are strictly correct or not does not effect the validity of results. Nevertheless, labelling

with sensible assignments aids comparisons with other datasets.
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Table 1: Quantum numbers used to label the upper and lower energy states.

Label Description
v1 CH symmetric stretch (σ+

g )
v2 CC symmetric stretch (σ+

g )
v3 CH antisymmetric stretch (σ+

u )
v4 Symmetric (trans) bend (πg)
`4 Vibrational angular momentum associated with v4

v5 Antisymmetric (cis) bend (πu)
`5 Vibrational angular momentum associated with v5

K Total vibrational angular momentum, |`4 + `5| and Rotational quantum number
e/ f Symmetry relative to the Wang transformation (see text)
ortho/para Nuclear spin state (see text)

Levels with parity +(−1)J are called e levels and those with parity −(−1)J are called

f levels. In other words, e and f levels transform in the same way as the rotational levels

of 1Σ+ and 1Σ− states, respectively [44]. Table 2 gives the combinations of e/ f and J

with corresponding parity. States of a linear molecular are often also classified based

on inversion, with states which are left unchanged called ‘gerade’ and labelled with a

subscript g, and those whose phase changes to opposite are called ‘ungerade’ and labelled

u. The ortho and para labels are defined based on the the permutation, P, of the identical

hydrogen atoms. For the para states the corresponding ro-vibrational wavefunctions, Ψr−v,

are symmetric, i.e. P Ψr−v = (+1)Ψr−v, while for the ortho states they are antisymmetric,

P Ψr−v = (−1)Ψr−v. The allowed combinations of these labels are shown in Table 3 and

explained in more detail below.

Table 2: Parity of states in 12C2H2 based on the symmetry labels used in this work.

e/ f J Parity
e Odd −
e Even +

f Odd +

f Even −
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Table 3: Allowed combinations of symmetry labels for ro-vibrational states (including spin) of 12C2H2,
where s = symmetric, a = antisymmetric, ‘Total’ is how the ro-vibronic wavefunction, including the nuclear
spin, acts under permutation symmetry.

u/g +/− Ro-vib. Nuclear spin Total
u + a Ortho a
u − s Para a
g + s Para a
g − a Ortho a

The e/ f labelling which has been adopted in this work was originally introduced by

Brown et al. [44] in order to eliminate issues relating to Plíva’s c/d labelling [45] and

the s/a labelling of Winnewisser and Winnewisser [46]. For more detailed information on

the e/ f rotational splitting, see the section titled ‘e/ f levels’, page 173 of Herman et al.

[47]. In summary, an interaction known as `-doubling occurs in linear molecules, which

splits the rotational, J, levels in certain vibrational states. The symmetry describing these

states is based on the total vibrational angular momentum quantum number, K. There

are, for example, two distinct states in the 2ν4 band; one with K = 0 (Σ+
g , (0002000)0)

and the other K = 2 (∆g, (0002200)2). In this case, the interaction with the rotation leads

to a splitting of the ro-vibrational levels in the K = 2 (∆g) sublevel (`-doubling). The

∆e (corresponding to one of the two bending modes) and Σe (corresponding to one of the

three stretching modes) states repel each other, pushing ∆e to a lower energy while ∆ f is

unaffected. For this reason the e state typically lies below the f state, as bending occurs at

a lower frequency than stretching [47]. This effect is J(J + 1) dependent and so becomes

increasingly important at higher rotational excitations. If a ro-vibrational state has no

rotational splitting (as is the case if both `4=0 and `5 = 0, but not if `4 = 1 and `5 = −1),

the state is always labelled e and there is no corresponding f state.

Herman and Lievin [48] give an excellent description of the ortho and para states of

acetylene which is summarised here. The hydrogen atoms in the main isotopologue of
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acetylene are spin- 1
2 particles and therefore, as Fermions, obey Fermi-Dirac rules. The 12C

carbon atoms, the only isotopologue considered in this work, are spin-0 and so do not need

to be considered here. The symmetry operation P describes a permutation of identical par-

ticles; when applied to the molecule it implies permutation of the two hydrogen atoms.

The total wavefunction must either be symmetric or antisymmetric upon such a transfor-

mation. In the case of fermions it must be antisymmetric. The permutation symmetry of

the ground electronic state is totally symmetric upon interchange of identical atoms and so

the electronic part of the wavefunction can be ignored for this situation. The symmetry of

the nuclear spin part of the wavefunction is not usually specified, but can easily be deduced

from the remaining symmetry. If the ro-vibrational part of the wavefunction is antisym-

metric under permutation symmetry (resulting from a combination of g and − or u and +),

then the nuclear spin state must be ortho and if the ro-vibrational part of the wavefunction

is symmetric (g,+ or u,−), then the nuclear spin state must be para (see Table 3).

It is important to distinguish the vibrational and rotational symmetries from the sym-

metry of the ro-vibrational states of Ψr−v. For a linear molecule such as 12C2H2 both the

rotational Ψr and vibrational Ψv contributions to Ψr−v should transform according with

the point group D∞h, spanning an infinite number of irreducible representations such as

Σ
+/−
g/u (K = 0), Π

+/−
g/u (K = 1), ∆

+/−
g/u (K = 2) etc. However, after combining the rotational

and vibrational parts into the ro-vibrational state Ψr−v, only the K = 0 states (i.e. Σ+
g , Σ−g ,

Σ+
u , Σ−u ) can lead to the total nuclear-rotation-vibrational state obeying the proper nuclear

statistics, as described above. These are the irreducible elements of the D2h(M) group

[49], which according to our labeling scheme correspond to the four pairs: e ortho, e para,

f ortho and f para. For example the vibrational state ν5 (Πu) can be combined with the

J = 1,K = 1 (Πg) rotational state to produce three ro-vibrational combinations of Σ+
u ,

Σ−u and Πu (D∞h point group). However only the Σ−u , Σ+
u states are allowed by the nuclear

statistics. Here ν5, Πu, K, Πg are not rigourous quantum numbers/labels, while J = 1, e/ f

8



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

and ortho/para are. Thus these two ro-vibrational states are assigned (0000011)1,J= 1, e,

para and (0000011)1,J=1, f , ortho, respectively. It should be also noted that generally nei-

ther K nor v1, . . . , v5 are good quantum numbers. However the quantity (−1)v3+v5 is s good

quantum number as it defines the conserved u/g symmetry as follows: a state is ungerade

if (−1)v3+v5 = −1 and gerade if (−1)v3+v5 = 1. The +/− labelling is derived from e/ f and J,

as given in Table 2.

Throughout this paper we shall use the notations (v1v2v3v
`4
4 v

`5
5 )K to describe vibrational

states and (v1v2v3v
`4
4 v

`5
5 )K , J, e/ f , ortho/para to describe ro-vibrational states. The e and f

labelling combined with J and nuclear spin state (ortho or para) gives the rigorous designa-

tion of each state. Other quantum number labels are approximate but, besides representing

the underlying physics, are necessary to uniquely distinguish each state. The symmetry

labels of the vibrational states (Σ+/−
u/g , Πu/g, ∆u/g, . . . ) have been added to the end of the

output energy files (see Table 8 and supplementary material).

2.3. Selection rules

The rigourous selection rules governing rotation-vibration transitions for a symmetric

linear molecule (molecular group D∞h(M)) are given by

∆J = ±1 with e↔e or f↔ f ,(1)

∆J = ±0 with e↔ f(2)

J′ + J′′ , 0(3)

u↔g(4)

The first two equations here correspond to the standard selection rule +↔ − for the dipole

transitions in terms of the parities. The ortho states of 12C2H2 have the statistical weight

gns = 3, while for the para states gns = 1.
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3. Experimental sources

A large number of experimentally determined transition frequencies can be found in

the literature for the main isotopologue of acetylene, 12C2H2. As part of this study we

attempted to conduct a rigorous and comprehensive search for all useable spectroscopic

data. This includes the transition frequency (in cm−1) and associated uncertainty, along

with quantum number assignments for both the upper and lower energy states. A unique

reference label is assigned to each transition, which is required for Marvel input. This

reference indicates the data source, table (or page) and line number that the transition

originated from. The data source tag is based on the notation employed by the IUPAC task

group on water [37, 50] with an adjustment discussed below. The associated uncertainities

were taken from the experimental data sources where possible, but it was necessary to

increase many of these in order to achieve consistency with the same transition in alter-

native data sources. As noted by Lyulin and Perevalov [25], these sources often provide

overall uncertainties for the strongest lines in a vibrational band which may underestimate

the uncertainty associated with some or all of the weaker lines.

60 sources of experimental data were considered. Two of the data compilations men-

tioned in the introduction [22, 23] contain data from multiple other sources, some of which

was not directly available to us. Data taken from these compilations is given a tag based on

that used in the compilation with the original reference given in Table 5. After processing,

59 sources were used in the final data set. The data from more recent papers is generally

provided in digital format, but some of the older papers had to be processed through dig-

italisation software, or even manually entered in the worst cases. After digitalisation the

data was converted to Marvel format; an example of the input file in this format is given

in Table 4; the full file can be found in the supplementary data for this work.

Table 5 gives a summary of all the data sources used in this work, along with the

10



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 4: Extract from the Marvel input file for the ortho transitions. The full file is supplied as part of the
supplementary information to this paper. All energy term values and uncertainties are in units of cm−1.

Energy Unc Upper assignment Lower assignment Ref
1248.2620 0.0005 0 0 0 1 1 1 -1 0 34 e ortho 0 0 0 0 0 0 0 0 35 e ortho 00Vander_table2_l1
1252.8546 0.0005 0 0 0 1 1 1 -1 0 32 e ortho 0 0 0 0 0 0 0 0 33 e ortho 00Vander_table2_l2
1257.4230 0.0005 0 0 0 1 1 1 -1 0 30 e ortho 0 0 0 0 0 0 0 0 31 e ortho 00Vander_table2_l4
1261.9694 0.0005 0 0 0 1 1 1 -1 0 28 e ortho 0 0 0 0 0 0 0 0 29 e ortho 00Vander_table2_l6
1266.4970 0.0005 0 0 0 1 1 1 -1 0 26 e ortho 0 0 0 0 0 0 0 0 27 e ortho 00Vander_table2_l8
1271.0098 0.0005 0 0 0 1 1 1 -1 0 24 e ortho 0 0 0 0 0 0 0 0 25 e ortho 00Vander_table2_l10
1275.5122 0.0005 0 0 0 1 1 1 -1 0 22 e ortho 0 0 0 0 0 0 0 0 23 e ortho 00Vander_table2_l11

wavelength range, number of transitions, number of vibrational bands, the approximate

temperature of the experiment and comments, which can be found in section 3.1. Table 6

gives those data sources which were considered but not used, with comments on the rea-

sons. The reference label given in these tables corresponds to the unique labels in the

Marvel input files, given in the supplementary data and illustrated in the last column of

Table 4. As transitions do not occur between ortho and para states, they form two com-

pletely separate spectroscopic networks, with no links between them. All input and output

files supplied in the supplementary data to this work are split into either ortho or para.

Table 5: Data sources used in this study with wavelength range, num-
bers of transitions and approximate temperature of the experiment. A/V
stands for the number of transitions analysed/verified. ’RT’ stands for
room temperature. See section 3.1 for the notes.

Tag Ref. Range (cm−1) A/V Bands Temp Note

09YuDrPe [51] 29-55 20/20 5 RT
16AmFaHe_kab91 [52] 61-1440 3233/3233 47 RT
16AmFaHe_amy10 [53] 63-7006 1232/1232 36 RT
11DrYu [54] 85-92 20/20 7 RT
17JaLyPe [55] 429-592 627/627 9 RT
81HiKa [56] 628-832 684/684 5 RT (3a)
93WeBlNa [57] 632-819 1610/1609 13 RT (3b)
00MaDaCl [58] 644-820 77/77 1 RT
01JaClMa [59] 656-800 355/355 4 RT
50BeNi [60] 671-4160 500/0 13 RT (3c)
16AmFaHe_gom10 [61] 1153-1420 27/27 3 RT
16AmFaHe_gom09 [62] 1247-1451 66/66 8 RT
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Table 5: Data sources used in this study with wavelength range, num-
bers of transitions and approximate temperature of the experiment. A/V
stands for the number of transitions analysed/verified. ’RT’ stands for
room temperature. See section 3.1 for the notes.

Tag Ref. Range (cm−1) A/V Bands Temp Note

00Vander [63] 1248-1415 64/64 2 RT
16AmFaHe_amy09 [64] 1253-3422 3791/3777 57 Up to 1455K (3d)
03JaMaDa [65] 1810-2235 486/486 14 RT
03JaMaDab [66] 3207-3358 109/109 2 RT
16AmFaHe_jac02 [67] 1860-2255 150/150 3 RT
72Pliva [45] 1865-2598 1016/1015 15 RT
16AmFaHe_ber98 [68] 1957-1960 19/19 1 RT (3e)
16AmFaHe_jac07 [69] 2515-2752 148/148 3 RT
16AmFaHe_pal72 [70] 2557-5313 42/42 3 RT
16AmFaHe_vda93 [71] 2584-3364 499/499 5 RT
93DcSaJo [72] 2589-2760 372/372 3 RT
82RiBaRa [6] 3140-3399 1789/1788 21 RT and 433K
16AmFaHe_sarb95 [73] 3171-3541 401/401 8 RT
06LyPeMa [74] 3182-3327 167/167 13 RT
16AmFaHe_man05 [75] 3185-3355 288/288 5 RT
16AmFaHe_sara95 [76] 3230-3952 424/424 5 RT
16AmFaHe_ber99 [77] 3358-3361 21/21 1 RT (3e)
16AmFaHe_lyub07 [78] 3768-4208 668/668 8 RT
16AmFaHe_gir06 [79] 3931-4009 91/91 10 RT
16AmFaHe_dcu91 [80] 3999-4143 251/251 6 RT
72BaGhNa [81] 4423-4791 472/408 8 RT (3f)
16AmFaHe_lyua07 [82] 4423-4786 440/440 8 RT
16AmFaHe_lyu08 [83] 5051-5562 320/320 7 RT
16AmFaHe_kep96 [84] 5705-6862 1957/1957 30 RT
17LyCa [23] 5852-8563 4941/4941 108 RT (3g)
16AmFaHe_rob08 [85] 5885-6992 568/568 20 RT
07TrMaDa [86] 6299-6854 546/546 13 RT (3h)
16AmFaHe_lyu09 [87] 6300-6666 89/89 5 RT
16KaNaVa [88] 6386-6541 19/19 2 RT (3i)
16AmFaHe_kou94 [89] 6439-6629 73/73 1 RT
15TwCiSe [90] 6448-6564 135/135 2 RT
02HaVa [91] 6448-6685 271/271 4 RT
77BaGhNa [92] 6460-6680 860/859 15 RT (3j)
05EdBaMa [93] 6472-6579 41/41 1 RT
13ZoGiBa [94] 6490-6609 37/37 1 RT
00MoDuJa [95] 6502-6596 36/36 1 RT
96NaLaAw [96] 6502-6596 36/36 1 RT
16AmFaHe_amy11 [97] 6667-7868 2259/2256 79 RT (3k)
15LyVaCa [98] 7001-7499 2471/2471 29 RT (3l)

12
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Table 5: Data sources used in this study with wavelength range, num-
bers of transitions and approximate temperature of the experiment. A/V
stands for the number of transitions analysed/verified. ’RT’ stands for
room temperature. See section 3.1 for the notes.

Tag Ref. Range (cm−1) A/V Bands Temp Note

09JaLaMa [99] 7043-7471 233/233 4 RT
02VaElBr [100] 7062-9877 626/626 11 RT (3m)
16LyVaCa [101] 8283-8684 627/627 14 RT (3n)
17BeLyHu [102] 8994-9414 432/432 11 RT
89HeHuVe [103] 9362-10413 657/657 14 RT (3o)
93SaKa [104] 12428-12538 91/73 1 RT (3p)
03HeKeHu [105] 12582-12722 60/60 1 RT
92SaKa [106] 12904-13082 216/212 3 RT (3q)
94SaSeKa [107] 13629-13755 53/53 1 <RT (223K) (3r)
Total 29-13755 37813/37206

Table 6: Data sources considered but not used in this work.

Tag Ref. Comments
16AmFaHe_abb96 [108] 0 transitions in 16AmFaHe; data not available in original paper.
16AmFaHe_eli98 [109] 0 transitions in 16AmFaHe; data not available in original paper.
72Plivaa [110]: Energy levels only
02MeYaVa [111] No suitable data
01MeYaVa [112] No suitable data
99SaPeHa [113] No suitable data
97JuHa [114] No suitable data
93ZhHa [115] No suitable data
93ZhVaHa [116] No suitable data
91ZhVaKa [117] No suitable data
13SiMeVa [118] No suitable data
83ScLeKl [119] No assignments given

3.1. Comments on the experimental sources in Table 5

(3a) 81HiKa [56] has an apparent misprint in column 2 of their Table 6: the R(19) line

should be 780.2601 cm−1 not 790.2601 cm−1, as confirmed by 01JaClMa [59], and in col-

umn 5 of their Table 4: the Q(3) line should be 728.9148 cm−1 not 729.9148 cm−1, also

confirmed by 01JaClMa [59].

(3b) 93WeBlNa_page14_l38 from 93WeBlNa [57] is not consistent with other data sources.

13
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It was marked in the original dataset as a transition that the authors did not include in their

analysis and so has been removed from our dataset.

(3c) 50BeNi [60] was deemed too unreliable to use in the final dataset: data are directly

contradicted by other sources.

(3d) Many of the transitions included from 16AmFaHe_amy09 [64] are not duplicated in

any other source. While this means they represent a valuable source of data, and have

thus been kept in the Marvel dataset, the fact that there is no other experimental data to

back them up means they should be treated with some degree of caution. As stated in the

original paper, modelling such a high temperature region is a challenge. There are a small

number of transitions - 14 out of 3791 - that do not match those from other data sources

and have been removed from our dataset.

(3e) Note that 16AmFaHe_ber98 [68] and 16AmFaHe_ber99 [77] are Raman spectra and

so the transitions do not follow the selection rules detailed in section 2.3 of this paper.

(3f) 72BaGhNa [81] has a band labelled (0013100)1 - (0001100)1 which is not consis-

tent with other data sources. After Marvel analysis it was found that the band labelled

(0104011)1 - (0001100)1 gave energies consistent with those labelled (0013100)1 - (0001100)1

in other data sources (16AmFaHe_lyua07, 16AmFaHe_lyu08). Bands including (0104011)1

are not present in other data sources. We have swapped the labelling of these bands ac-

cordingly. All other bands from this dataset were included, with the exception of the

single transition labelled 72BaGhNa_table2_c2_l32, which was not consistent with other

datasets.

(3g) 17LyCa [23] provides a collection of data recorded in Grenoble using cavity ring

down spectroscopy from several papers. 15LyVaCa (FTS15 in the notation of 17LyCa)

[98], 16LyVaCa (FTS16) [101] and 17BeLyHu (FTS17) [102] were all already included

as separate files in our dataset and so were removed from the 17LyCa [23] dataset. The

remaining data, CRDS13 [120], CRDS14 [121] and CRDS16 [122] are all included in the
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final dataset with the tag ’17LyCa’. See comment (3l).

(3h) 07TrMaDa [86] contained a band labelled 2ν2 + (ν4 + 3ν5)0
+. `4 and `5 were assigned

as 1 and -1 respectively, to be consistent with the labelling of 16AmFaHe_kep96.

(3i) Full data for 16KaNaVa [88] was provided in digital format from the corresponding

author (private communication, Juho Karhu).

(3j) 77BaGhNa_table3_l205 of 77BaGhNa [92] does not fit with the same transition in

two other sources.

(3k) 16AmFaHe_amy11 [97] includes a band ((1000066)6 - (0000000)0 ) which has transi-

tions from J = 0 to J = 10, 11, 12. These are not physical and so have been removed from

the dataset. There is one other transition which we have removed which we have found to

be inconsistent with the other datasets.

(3l) There has been some differences in the authors approach to labelling levels between

15LyVaCa [98] and 17LyCa [23], see comment (3g) (Alain Campargue, private commu-

nication). This was partly to allow all bands to have unique labelling, as duplicate labels

were provided in 15LyVaCa as indicated by ∗∗ or ∗ superscripts. We have relabelled these

bands to fit with other data sources, for example 16AmFaHe_amy11 [97]. We have been

informed by the authors of 17LyCa that they are currently making amendments to their

published dataset (Alain Campargue, private communication). Table 7 summarises the

changes in labelling between 15LyVaCa, the current version of 17LyCa_FTS15 (see sup-

plementary data of [23]) and this work.

(3m) 02VaElBr [100] is missing one band labelling in the footnote to their Table 3. The

missing label for the penultimate level is I = (v1v2v3v4
l4v5

l5)K = (0020011)1. Full data was

provided in digital format from the corresponding author (Jean Vander Auwera, private

communication).

(3n) 16LyVaCa [101] has duplicate lines in the (1110000)0 band. Those which are incon-

sistent with other sources were removed and thus not included in the final data set. It is
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possible that they should be re-assigned.

(3o) The assignments given for the band labelled (0122020)0 - (0000000)0 in 89HeHuVe

[103] require the upper state to have the parity of an f-level, which is unphysical if both

`4=0 and `5=0. There can be no e/ f splitting in this case. We assumed this upper state

should be labelled (012222−2)0. We have amended and included these reassigned transi-

tions in our dataset.

(3p) Table 1 of 93SaKa [104] has duplicates for the e↔e transitions in the (2021100)1 -

(0000011)1 vibrational band. Those which are inconsistent with other sources were re-

moved and thus not included in the final data set.

(3q) 92SaKa [106] contains some duplicate lines which have been assigned identical quan-

tum numbers. Those which are inconsistent with other sources were removed and thus not

included in the final data set.

(3r) 94SaSeKa [107] gives two tables of data but only one is assigned with vibrational

quantum numbers, so data from the other table was not considered as part of this work.

Table 7: Changes in labelling between 15LyVaCa [98], 17LyCa_FTS15
[23] and this work, in the form (v1v2v3v4

l4v5
l5 )K . See comment (3l) in the

text.

15LyVaCa 17LyVa_FTS15 This work
(020421−1)1∗∗ (0113100)1 (0204110)1

(0113100)1 (0204011)1 (0113100)1

(1102011)1 (1102011)1 (1102110)1

(110221−1)1∗∗ (020223−1)1 (1102011)1

(110221−1)1∗ (110221−1)1 (110221−1)1

3.2. General comments

A number of general issues had to be dealt with before consistent networks could be

obtained.

(1a) 16AmFaHe [22] released a collation and analysis of experimental data in the mid-
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dle of our collation and analysis stage. The entire database was formatted into Marvel

format so it could subsequently be run through the software and combined with the other

experimental sources referenced in this paper. Some of the experimental sources featured

in the 16AmFaHe database paper had already been collated and formatted to Marvel for-

mat prior to its publication. These are 03JaMaDa [65], 91KaHeDi [52], 06LyPeMa [74],

07LyPeGu [82], 82RiBaRa [6], 02VaElBr [100] and 00MoDuJa [95]. We used a Marvel

format version of 16AmFaHe’s compilation to compare to our data, as a further check

to validate data had been digitised and formatted correctly; the versions included in the

present study come from the original datasets for these papers. A few of the sources that

were cited in 16AmFaHe were not included in our final dataset. There were 0 transitions in

16AmFaHe from [108] (abb96), [109] (eli98) or [54] (drou11). The data for [54] was taken

from the original paper (see 11DrYu in Table 5), but there was no data obviously available

in the original papers for the other two sources. We have tried to keep the quantum num-

ber labelling consistent with that of 16AmFaHe as much as possible (see comment (1b)

for an exception). Some other sources were labelled in order to make them consistent, in

particular those cases were `4 and `5 were not defined in the original source.

(1b) Many of the `4 and `5 assignments were inconsistent between different sources, were

not given in the original data (often only the total K = |`4 + `5| is given) or were inconsis-

tent between data in the same dataset. For example, the bands with upper energies labelled

(v1v2v3v
`4
4 v

`5
5 )K = (0002∗1∗)1, (1102∗1∗)1 or (0102∗1∗)1 in 16AmFaHe. Using simple com-

bination differences, with the known lower value and given transition wavenumber, there

was found to be more than one value for the upper energy. We assume this duplication of

quantum numbers for different states is down to the different method of analysis used in

16AmFaHe, which does not require a completely unique set. For example, for the upper

level (110221−1)1, J=2, e, there are two transitions which give as upper energy level of

7212.93 cm−1 (from 16AmFaHe_kep96) and three that give 7235.29 cm−1 (from 16Am-
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FaHe_vda02 and 16AmFaHe_rob08). These same two energies can be found in multiple

other sources (07TrMaDa, 15LyVaCa, 77BaGhNa, 02VaElBr), but the `4 and `5 assign-

ment was inconsistent for states of the same upper energy. The decision was made to

batch them together and assign the first energy level (7212.94 cm−1 in this example) as

(110221−1)1 and the second (7235.29 cm−1 in this example) as (1102011)1. The same logic

was applied to other bands with K = |`4 + `5|=1.

(1c) The e/ f notation (see section 2.2) was mostly specified in experimental papers, but

some required additional investigation in order to assign them in such a way as to be con-

sistent with other papers. The c/d notation in [45], for example, is analogous to the e/ f

notation used in this work.

(1d) All transitions which were considered but not processed in the final dataset are la-

belled with _ct at the end of the reference and have a minus sign in front of the transi-

tion frequency, at the start of the file. Marvel software ignores any line with a negative

wavenumber.

3.3. Other comments

The following are sources of the acetylene data in the HITRAN database ([66, 123,

124, 125]): 16AmFaHe_gom09 [62], 16AmFaHe_gom10 [61], 96NaLaAw [96] , 05Ed-

BaMa [93], 16AmFaHe_lyua07 [82], 16AmFaHe_jac07 [69], 16AmFaHe_jac09 [99], 00Van-

der [63], 02HaVa [91], 03JaMaDab [66], 16AmFaHe_kab91 [52], 72Pliva [45], 03JaMaDa

[65], 82RiBaRa [6], 16AmFaHe_vda93 [71].

4. Results

The MARVEL website (http://kkrk.chem.elte.hu/marvelonline/marvel_full.

php) has a version of Marvel which can be run online. The variable NQN (number of
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Table 8: Extract from the Marvel output file for the ortho transitions. The full file is supplied as part of the
supplementary information to this paper. All energies and uncertainties are in units of cm−1.

Assignment Energy Unc Num Trans u/g Symmetry
0 0 0 0 0 0 0 0 1 e ortho 2.35329 0.00003 204 g sigma_g_plus
0 0 0 0 0 0 0 0 3 e ortho 14.11952 0.00002 289 g sigma_g_plus
0 0 0 0 0 0 0 0 5 e ortho 35.29793 0.00002 306 g sigma_g_plus
0 0 0 0 0 0 0 0 7 e ortho 65.88710 0.00002 298 g sigma_g_plus
0 0 0 0 0 0 0 0 9 e ortho 105.88501 0.00002 306 g sigma_g_plus
0 0 0 0 0 0 0 0 11 e ortho 155.28899 0.00002 306 g sigma_g_plus
0 0 0 0 0 0 0 0 13 e ortho 214.09576 0.00002 306 g sigma_g_plus
0 0 0 0 0 0 0 0 15 e ortho 282.30144 0.00002 310 g sigma_g_plus
0 0 0 0 0 0 0 0 17 e ortho 359.90150 0.00002 294 g sigma_g_plus
0 0 0 0 0 0 0 0 19 e ortho 446.89078 0.00003 282 g sigma_g_plus
0 0 0 0 0 0 0 0 21 e ortho 543.26353 0.00002 274 g sigma_g_plus
0 0 0 1 1 0 0 1 1 e ortho 614.04436 0.00018 98 g pi_g
0 0 0 1 1 0 0 1 2 f ortho 618.77696 0.00013 133 g pi_g

quantum numbers) is 11 in the case of acetylene, given in Table 1. These are required for

both the lower and upper levels, as illustrated in Table 4.

All energies are measured from the zero point energy (ZPE). This is the energy of the

ground ro-vibrational state, which is given a relative energy of 0 and is included in the

para set of energy levels. The ortho set of energies therefore needs a ‘magic number’ to

be added to all the Marvel ortho-symmetry energies. Here the magic number was taken

as the ground vibrational (0000000)0, J = 1 state of 16AmFaHe [22] who determined

the value 2.3532864 cm−1, see Table 10 below. The output for the ortho energies in the

supplementary data, and the extract of the output file in Table 8, all have this magic number

added for the main spectroscopic network. The main spectroscopic network in the para

output does not require a magic number as it contains the ground ro-vibrational level,

(0000000)0, J = 0. There are a small number (284 for ortho and 119 for para) of energy

levels which are not joined to the main network. If more experimental transitions became

available in the future it would be possible to link these to the main network.

A total of 37,813 transitions were collated and considered (20,717 ortho and 17,096
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para) from the data sources detailed in section 3. Of those 607 were found to be inconsis-

tent with others (353 ortho and 254 para) and thus removed from the final data set, leaving

a total of 37,206 transitions used as input into Marvel (20,364 ortho and 16,842 para). A

plot of energy as a function of rotational quantum number, J, was made for each vibra-

tional band as a check that quantum numbers had been assigned consistently. Figure 1 and

2 show this for each vibrational band, for the ortho and para states respectively. Figures

3 and 4 illustrate the ortho and para spectroscopic networks, respectively. The nodes are

energy levels and the edges the transitions between them. Each consists of a large main

network with a series of smaller networks currently unattached. Different algorithms can

be used to present these networks in a variety of ways; figure 5, for example, gives alter-

native representations of the structure. They highlight the intricate relationships between

different energy levels and illustrate how the variety of sources collated in this work link

together. We note that the inclusion of transitions intensities as weights in the spectro-

scopic network can aid in the determination of transitions which should preferentially be

investigated in new experiments [28].
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Figure 1: Marvel energy levels (cm−1) as a function of rotational quantum number, J, for all the vibrational
energy bands in the ortho network analysed in this paper.
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Figure 2: Marvel energy levels (cm−1) as a function of rotational quantum number, J, for all the vibrational
energy bands in the para network analysed in this paper.
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Figure 3: Ortho spectroscopic network produced using Marvel input data.
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Figure 4: Para spectroscopic network produced using Marvel input data.
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Figure 5: Alternative ortho (left) and para (right) spectroscopic networks produced using Marvel input data.

Table 9 gives the vibrational (J=0) energies resulting from the Marvel analysis, with

associated uncertainity, vibrational assignment and the number of transitions (Num Trans)

which were linked to the particular energy level. The higher the number of transitions the

more certainty can be given to the energy value. See comment (3o) of section 3.1 relating

to the band (012222−2)0 which may not have the correct assignment.

Table 9: Vibrational energy levels (cm−1) from Marvel analysis

(v1v2v3v
`4
4 v

`5

5 )K e/ f State Marvel Energy (cm−1) Uncertainty (cm−1) Num Trans
(0000000)0 e para 0 0.00005 85
(0002000)0 e para 1230.3903 0.00028 10

(000111−1)0 e ortho 1328.07 0.00016 19
(000111−1)0 f para 1340.55068 0.00078 9
(0000020)0 e para 1449.11236 0.00059 10
(0100000)0 e para 1974.31662 0.003 1

(000311−1)0 e ortho 2560.59 0.001 3
(000222−2)0 e para 2648.01447 0.002 1
(000113−1)0 e ortho 2757.8 0.00095 3
(0000040)0 e para 2880.22008 0.002 1

(010111−1)0 e ortho 3281.9 0.00087 5
(0010000)0 e ortho 3294.84 0.00095 4

(010111−1)0 f para 3300.63559 0.00384 2
(1000000)0 e para 3372.83899 0.008 1
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(010311−1)0 e ortho 4488.84 0.0006 2
(0012000)0 e ortho 4508.01 0.00133 4

(010222−2)0 f ortho 4599.77 0.00195 2
(001111−1)0 e para 4609.34105 0.00295 3
(001111−1)0 f ortho 4617.93 0.00254 4
(100111−1)0 e ortho 4673.63 0.00089 3
(100111−1)0 f para 4688.84649 0.0057 1
(010113−1)0 e ortho 4710.74 0.009 1
(0010020)0 e ortho 4727.07 0.0006 3
(1000020)0 e para 4800.13729 0.0003 1

(020111−1)0 e ortho 5230.23 0.005 1
(0110000)0 e ortho 5260.02 0.00166 2

(010313−1)0 e ortho 5893.26 0.005 1
(100113−1)0 e ortho 6079.69 0.00186 2
(0010040)0 e ortho 6141.13 0.005 1
(0112000)0 e ortho 6449.11 0.003 1
(1102000)0 e para 6513.99145 0.004 1
(1010000)0 e ortho 6556.46 0.00005 4

(110111−1)0 e ortho 6623.14 0.00596 2
(0110020)0 e ortho 6690.58 0.006 1
(2000000)0 e para 6709.02119 0.00186 2
(1100020)0 e para 6759.23908 0.005 1
(0114000)0 e ortho 7665.44 0.005 1
(0022000)0 e para 7686.07895 0.001 1

(020422−2)0 e para 7707.27769 0.002 1
(1012000)0 e ortho 7732.79 0.00265 4

(020333−3)0 e ortho 7787.32 0.005 1
(002111−1)0 e ortho 7805 0.00094 3
(110311−1)0 e ortho 7816.01 0.005 1
(101111−1)0 f ortho 7853.28 0.006 1
(1010020)0 e ortho 7961.82 0.00383 3

(200111−1)0 e ortho 7994.39 0.00129 2
(200111−1)0 f para 8001.20409 0.00494 2
(2000020)0 e para 8114.36288 0.00185 3
(1100040)0 e para 8164.55403 0.004 1
(1110000)0 e ortho 8512.06 0.00021 3

(120111−1)0 e ortho 8556.59 0.005 1
(120111−1)0 f para 8570.32289 0.005 1
(2100000)0 e para 8661.14909 0.005 1
(0300040)0 e para 8739.81449 0.005 1
(0310000)0 e ortho 9151.73 0.005 1
(0030000)0 e ortho 9639.86 0.00772 2
(1112000)0 e ortho 9668.16 0.00772 2

(012222−2)0 f ortho 9741.62 0.015 1
(012111−1)0 e ortho 9744.54 0.015 1
(2010000)0 e ortho 9835.17 0.00772 2
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(1030000)0 e ortho 12675.7 0.0005 1
(3010000)0 e ortho 13033.3 0.005 1
(2210000)0 e ortho 13713.8 0.003 1

5. Comparison to other derived energy levels

Table 10 compares our rotational energy levels for the vibrational ground state, which

are determined up to J = 69, with those obtained by 16AmFaHe [22] from an effective

Hamiltonian fit to the observed data. In general the agreement is excellent. However for

the highest few levels with J ≥ 55 we find differences which are significantly larger than

our uncertainties; our levels are systematically below those of 16AmFaHe. This suggests

that the effective Hamiltonian treatment used by 16AmFaHe becomes unreliable for these

high J levels. It should be noted that data relating to these highly excited levels originated

from 16AmFaHe_amy9, a high temperature experiment which has not been reproduced;

see comment (3d), section 3.1. It is interesting to note that a further comparison with

rotational energies extrapolated as part of 17LyPe’s ASD-1000 spectroscopic databank

[24], also given in table 10, yields differences of approximately the same magnitude but,

in contrast, consistently lower than our work.

Table 10: Comparison of pure rotational levels with those of 16AmFaHe
[22].

J This work Uncertainty 16AmFaHe Difference 17LyPe Difference State
1 2.35329 0.00003 2.353286417 0 2.3533 0.00001 ortho
2 7.05982 0.00003 7.05982021 0 7.0598 -0.00002 para
3 14.11952 0.00002 14.119523294 0.00001 14.1195 -0.00002 ortho
4 23.53228 0.00003 23.532278547 0 23.5322 -0.00008 para
5 35.29793 0.00002 35.297929811 0 35.2978 -0.00013 ortho
6 49.41629 0.00003 49.416281896 -0.00001 49.4161 -0.00019 para
7 65.8871 0.00002 65.887100587 0 65.8869 -0.0002 ortho
8 84.71012 0.00002 84.710112648 -0.00001 84.7098 -0.00032 para
9 105.88501 0.00002 105.885005832 0 105.8846 -0.00041 ortho

10 129.41144 0.00003 129.411428888 -0.00001 129.411 -0.00044 para
11 155.28899 0.00002 155.28899157 0.00001 155.2885 -0.00049 ortho
12 183.51727 0.00003 183.517264652 -0.00001 183.5167 -0.00057 para
13 214.09576 0.00002 214.095779933 0.00002 214.0951 -0.00066 ortho
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14 247.02403 0.00003 247.024030258 0 247.0233 -0.00073 para
15 282.30144 0.00002 282.301469525 0.00003 282.3007 -0.00074 ortho
16 319.92751 0.00003 319.927512702 0 319.9266 -0.00091 para
17 359.9015 0.00002 359.901535847 0.00004 359.9006 -0.0009 ortho
18 402.22287 0.00003 402.22287612 0.00001 402.2219 -0.00097 para
19 446.89078 0.00003 446.890831804 0.00006 446.8898 -0.00098 ortho
20 493.90464 0.00003 493.904662324 0.00002 493.9036 -0.00104 para
21 543.26353 0.00002 543.263588267 0.00006 543.2625 -0.00103 ortho
22 594.96668 0.00004 594.966791406 0.00011 594.9657 -0.00098 para
23 649.01328 0.00003 649.013414717 0.00014 649.0123 -0.00098 ortho
24 705.40237 0.00004 705.402562408 0.00019 705.4015 -0.00087 para
25 764.13315 0.00003 764.133299944 0.00015 764.1322 -0.00095 ortho
26 825.20439 0.00004 825.204654067 0.00026 825.2037 -0.00069 para
27 888.61531 0.00003 888.615612828 0.00031 888.6147 -0.00061 ortho
28 954.36496 0.00005 954.365125617 0.00017 954.3642 -0.00076 para
29 1022.45167 0.00003 1022.452103183 0.00044 1022.4513 -0.00037 ortho
30 1092.87513 0.00005 1092.875417676 0.00029 1092.8747 -0.00043 para
31 1165.63343 0.00004 1165.633902667 0.00048 1165.6333 -0.00013 ortho
32 1240.72592 0.00017 1240.726353188 0.00043 1240.7259 -0.00002 para
33 1318.15099 0.00011 1318.151525765 0.00054 1318.1512 0.00021 ortho
34 1397.90769 0.00023 1397.908138445 0.00045 1397.908 0.00031 para
35 1479.99435 0.00007 1479.994870843 0.00053 1479.9949 0.00055 ortho
36 1564.40979 0.00026 1564.410364167 0.00057 1564.4105 0.00071 para
37 1651.15189 0.00017 1651.153221265 0.00134 1651.1535 0.00161 ortho
38 1740.22038 0.00037 1740.222006657 0.00163 1740.2225 0.00212 para
39 1831.61393 0.00026 1831.615246582 0.00132 1831.6159 0.00197 ortho
40 1925.33058 0.00074 1925.331429031 0.00085 1925.3322 0.00162 para
41 2021.36757 0.00043 2021.369003793 0.00144 2021.3699 0.00233 ortho
42 2119.72439 0.0006 2119.726382499 0.00199 2119.7273 0.00291 para
43 2220.4006 0.00057 2220.401938666 0.00134 2220.4029 0.0023 ortho
44 2323.39201 0.00127 2323.394007739 0.002 2323.395 0.00299 para
45 2428.69912 0.00135 2428.70088714 0.00177 2428.7018 0.00268 ortho
46 2536.31702 0.00103 2536.320836316 0.00382 2536.3217 0.00468 para
47 2646.25026 0.00128 2646.252076785 0.00182 2646.2527 0.00244 ortho
48 2758.49217 0.00142 2758.492792187 0.00062 2758.4931 0.00093 para
49 2873.03874 0.00194 2873.041128336 0.00239 2873.0411 0.00236 ortho
50 2989.89046 0.00175 2989.895193269 0.00473 2989.8947 0.00424 para
51 3109.04649 0.00148 3109.0530573 0.00657 3109.0519 0.00541 ortho
52 3230.50478 0.00124 3230.512753073 0.00797 3230.5108 0.00602 para
53 3354.26378 0.00224 3354.272275619 0.0085 3354.2694 0.00562 ortho
54 3480.32661 0.0025 3480.329582411 0.00297 3480.3256 -0.00101 para
55 3608.67187 0.0025 3608.682593419 0.01073 3608.6772 0.00533 ortho
56 3739.32523 0.00118 3739.329191172 0.00396 3739.3223 -0.00293 para
57 3872.2553 0.00208 3872.267220814 0.01193 3872.2585 0.0032 ortho
58 4007.49264 0.0017 4007.494490165 0.00185 4007.4836 -0.00904 para
59 4144.99542 0.00118 4145.008769784 0.01335 4144.9955 0.00008 ortho
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60 4284.80143 0.00181 4284.807793029 0.00636 4284.7918 -0.00963 para
61 4426.8772 0.00154 4426.889256124 0.01206 4426.8701 -0.0071 ortho
62 4571.24409 0.00142 4571.25081822 0.00673 4571.2281 -0.01599 para
63 4717.87442 0.00142 4717.890101462 0.01569 4717.8635 -0.01092 ortho
64 4866.79028 0.00232 4866.804691055 0.01441 4866.7736 -0.01668 para
65 5017.97095 0.00168 5017.992135336 0.02119 5017.9561 -0.01485 ortho
66 5171.43923 0.00366 5171.449945837 0.01072 5171.4085 -0.03073 para
67 5327.14526 0.00195 5327.175597358 0.03034 5327.128 -0.01726 ortho
69 5645.38676 0.003 5645.420139428 0.03338 5645.3585 -0.02826 ortho

The supplementary data from 17LyCa [23] contains lower energy levels, frequency

and assignments, from which upper energy levels can be calculated. Figure 6 gives the

differences between the energies given in 17LyCa and this work as a function of J. The

vast majority are within 0.005 cm−1. Note that the difference in labelling of some bands

has been taken into account when comparisons are made (see comment (3l) in section 3.1

and comment (1b) in section 3.2).

The energy levels given as supplementary data in annex 5 of 16AmFaHe [22] are

separated into polyads which are characterised by a small number of quantum numbers;

Nrmv = 5v1 + 3v2 + 5v3 + v4 + v5, J, e/ f symmetry and u/g symmetry. As there are more

than one state defined by these quantum numbers, the only comparison that was possible to

make was to match these and find the closest energy value within these bounds. As such,

we cannot be certain that bands have been matched correctly. 17LyCa compared what they

could against 16AmFaHe’s data but also could not find a reliable way to determine unam-

biguously which energy of each polyad block corresponds to their energy levels. Figure

7 gives the difference between the energies in this work and those matched with 16Am-

FaHe as a function of rotational angular momentum quantum number, J. 6160 out of the

11,154 energies differ by less than 0.01 cm−1. However, this leaves 4994 energies with a

difference of higher than 0.01 cm−1. 2176 of these energies also appear in 17LyCa, so a

comparison could be made between the three. Only 7 of the energies in the 17LyCa dataset

are closer to 16AmFaHe than this work, and of those all are within 0.02 cm−1 with this
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Figure 6: Differences between the energy term values given in 17LyCa [23] and this work as a function of
rotational angular momentum quantum number, J.
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work.

It should be noted, however, that the differences between this work and 16AmFaHe are

largest for those energy levels with a low value of Num Trans (the number of transitions

that link the energy state to other energies within the dataset); see figure 8. The vast ma-

jority of energy levels which only have one transition are not in the 17LyCa dataset. Many

of these transitions came from the data source 16AmFaHe_amy09; see comment (3d) in

section 3.1. It would be of use to have more experimental data on transitions to these lev-

els in order to confirm their validity. The entire band (012222−2)0 has differences of over

900cm-1 in comparison to the matched values in 16AmFaHe. This indicates that this band

has been misassigned (see comment (3o in section 3.1)). We are uncertain currently as

what it should be reassigned to. We have excluded this band from figures 7 and 8.

It should be made clear, as mentioned above, that those energy levels present in the in-

put data which are only linked to the main spectroscopic network by one transition should

be treated with caution; this is given as a parameter in the last column of the output files

included in the supplementary data. It can be used, along with the uncertainties, as an in-

dication of the reliability of each energy level. Marvel only processes data given as input;

it does not extrapolate to higher excitations.
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Figure 7: Deviations in cm−1 between this work and 16AmFaHe [22] as a function of rotational angular
momentum quantum number, J. Different colours represent different designations of e/ f and u/g.
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Figure 8: Deviations in cm−1 between this work and 16AmFaHe [22] as a function of the number of transi-
tions that link to the energy level in our dataset.

6. Conclusions

A total of 37,813 measured experimental transitions from 61 publications have been

considered in this work. From this 6013 ortho and 5200 para energy levels have been

determined using the Measured Active Rotational-Vibrational Energy Levels (Marvel)

technique. These results have been compared with alternative compilations based on the

use of effective Hamiltonians. An ab initio high temperature linelist for acetylene is in

prep. as part of the ExoMol project [126], for which this data will be used in the process

of validation of theoretical calculations.

A significant part of this work was performed by pupils from Highams Park School in
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London, as part of a project known as ORBYTS (Original Research By Young Twinkle

Scientists). The Marvel study of TiO [33] was also performed as part of the ORBYTS

project and further studies on other key molecules will be published in due course. A

paper discussing our experiences of performing original research in collaboration with

school children will be published elsewhere [127].

7. Supplementary Data

Please refer to the web version of this work for access to the supplementary data. There

are four files provided, as listed in Table 11. The column definitions are given in Table 12

for files 1 and 2 (Marvel input files) and Table 13 for files 3 and 4 (Marvel output files).

Table 11: Supplied supplementary data files.

File Name
1 MARVEL_ortho_transitions_input.txt
2 MARVEL_para_transitions_input.txt
3 MARVELenergylevels_ortho_output.txt
4 MARVELenergylevels_para_output.txt
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Table 12: Definition of columns in files 1 and 2.
Column Label Description

1 Energy (cm−1) Transition wavenumber
2 Uncertainty (cm−1) Associated uncertainity

Upper assignments:
3 v1 CH symmetric stretch (σ+

g )
4 v2 CC symmetric stretch (σ+

g )
5 v3 CH antisymmetric stretch (σ+

u )
6 v4 Symmetric (trans) bend (πg)
7 `4 Vibrational angular momentum associated with v4

8 v5 Antisymmetric (cis) bend (πu)
9 `5 Vibrational angular momentum associated with v5

10 K =|`4 + `5|, total vibrational angular momentum
11 J Rotational angular momentum
12 e/ f Symmetry relative to the Wang transformation (see section 2.2)
13 ortho/para Nuclear spin state (see section 2.2)

Lower assignments:
14 v1 CH symmetric stretch (σ+

g )
15 v2 CC symmetric stretch (σ+

g )
16 v3 CH antisymmetric stretch (σ+

u )
17 v4 Symmetric (trans) bend (πg)
18 `4 Vibrational angular momentum associated with v4

19 v5 Antisymmetric (cis) bend (πu)
20 `5 Vibrational angular momentum associated with v5

21 K =|`4 + `5|, total vibrational angular momentum
22 J Rotational angular momentum
23 e/ f Symmetry relative to the Wang transformation (see section 2.2)
24 ortho/para Nuclear spin state (see section 2.2)
25 Ref Unique reference label (see section 2.2)
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Table 13: Definition of columns in files 3 and 4.
Column Label Description

1 v1 CH symmetric stretch (σ+
g )

2 v2 CC symmetric stretch (σ+
g )

3 v3 CH antisymmetric stretch (σ+
u )

4 v4 Symmetric (trans) bend (πg)
5 `4 Vibrational angular momentum associated with v4

6 v5 Antisymmetric (cis) bend (πu)
7 `5 Vibrational angular momentum associated with v5

8 K =|`4 + `5|, total vibrational angular momentum
9 J Rotational angular momentum

10 e/ f Symmetry relative to the Wang transformation (see section 2.2)
11 ortho/para Nuclear spin state (see section 2.2)
12 Energy (cm−1) Marvel energy assignment
13 Uncertainty (cm−1) Marvel uncertainty
14 Num Trans The number of transitions in the dataset which link to this state
15 u/g symmetry See section 2.2
16 Symmetry label See section 2.2
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